Abstract
Exposure to fluoride beyond the recommended level for longer duration causes both dental and skeletal fluorosis. Thus, the development of cost-effective, locally available, and environmentally benign adsorbents for fluoride removal from contaminated water sources is absolutely required. In the present study, diatomaceous earth (diatomite) locally available in Ethiopia, modified by treating it with an aluminum hydroxide solution, was used as an adsorbent for fluoride removal from aqueous solutions. Adsorption experiments were carried out by using batch contact method. The adsorbent was characterized using FT-IR spectroscopy. Effects of different parameters affecting efficiency of fluoride removal such as adsorbent dose, contact time, initial fluoride concentration, and pH were investigated and optimized. The optimum adsorbent dose, contact time, initial fluoride concentration, and pH values were 25 g/L, 180 min, 10 mg/L, and 6.7, respectively. The performance of the adsorbent was also tested under optimum conditions using groundwater samples taken from Hawassa and Ziway. Langmuir and Freundlich isotherm models were applied to describe the equilibrium data. Compared to Langmuir isotherm (R2 = 0.888), the Freundlich isotherm (R2 = 0.985) model was better fitted to describe the adsorption characteristics of fluoride on Al-diatomite. The Langmuir maximum adsorption capacity was 1.67 mg/g. The pseudosecond-order model was found to be more suitable than the pseudofirst-order to describe the adsorption kinetics. The low correlation coefficient value of R2 = 0.596 for the intraparticle diffusion model indicates that the intraparticle diffusion model does not apply to the present studied adsorption system. The maximum fluoride removal was observed to be 89.4% under the optimum conditions which indicated that aluminum hydroxide-modified diatomite can be used as efficient, cheap, and ecofriendly adsorbents for the removal of fluoride from contaminated water.
Highlights
Water is a source of life, a fundamental requirement for health and main need for industrialization
Because of the long contact time of fluoride-bearing ores, minerals, and rocks with groundwater, there is a constant leaching of fluoride ions that is responsible for the high fluoride concentration in groundwater as well as oceanic water [3]
Raw diatomaceous earth (DE) has a low fluoride removal potential. e highest percent fluoride removal at optimum adsorption conditions is between 23.4% and 25.6% for 8 mg/L fluoride at pH 2, contact time of 30 min, solidliquid ratio of 0.4 g/50 mL, and shaking speed of 200 rpm [13]. us, surface modification of Diatomaceous earth (DE) so that it can have high fluoride adsorption capacity is necessary. erefore, the main aim of this study is to investigate the effectiveness and efficiency of fluoride ion-sportive removal by diatomite modified with aluminum hydroxide from aqueous solutions
Summary
Water is a source of life, a fundamental requirement for health and main need for industrialization. It is essential for all forms of growth and development: humans, animals, and plants. In addition to arsenic and nitrate, which cause large-scale health problems, fluoride is classified as one of the contaminants of water for human consumption by the World Health Organization (WHO) [1]. Fluoride contamination of groundwater by natural as well as anthropogenic sources is a major problem worldwide, imposing a serious threat to human health. Because of the long contact time of fluoride-bearing ores, minerals, and rocks with groundwater, there is a constant leaching of fluoride ions that is responsible for the high fluoride concentration in groundwater as well as oceanic water [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.