Abstract
Recent U.S. EPA regulations (40 CFR Section 503) specify maximum concentrations of pathogens and metals for Class A wastewater treatment plant sludges. The most common sludge process is mesophilic (35 degrees C) digestion which stabilizes the solids, produces a combustible gas but does not create an effluent that meets the 503 Class A pathogen requirements. This investigation was conducted to determine whether anaerobic digestion processes incorporating a thermophilic stage could achieve 503 Class A pathogen levels. The research reported here was a bench-scale screening study meant to identify the most promising process alternatives for further investigation. Fecal Coliform (FC) concentrations were used to assess disinfection efficiency. Digesters were 30 L capacity fed semi-continuously in draw-fill mode. Digester startup was rapid to produce true thermophiles. Temperature staging and pH were assessed in 3 sets of experiments: Set 1 were one stage ("acid phase"), Set 2 were one stage ("acid + methane phases") and Set 3 were two stage ("acid phase" then "methanogenic phase"). Feed was a 1:1 mixture of Thickened Waste Activated Sludge and Primary Sludge. The following anaerobic digestion configurations and operating parameters allowed the production of digested sludge with a mean FC concentration statistically less than 10(3) (the regulatory value for Class A sludge): thermophilic single stage acid phase at 52 and 62 degrees C; thermophilic single stage acid + methane phase at 48 degrees C, 52 degrees C and 62 degrees C; two-stage mesophilic acid phase followed by mesophilic methane phase; two stage mesophilic acid phase followed by thermophilic methane phase at 48 degrees C, 52 degrees C and 62 degrees C. If the maximum digested FC concentration must be below 10(3) MPN/g TS then the following digester configurations and operating conditions will be compliant: two stage mesophilic acid phase followed by thermophilic methane phase at 52 degrees C and 62 degrees C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.