Abstract

Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69g glucose/L/h. When using Saccharomyces cerevisiae D5A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call