Abstract
Chemicals that are known or suspected of being endocrine disrupting chemicals (EDCs) have received increased attention over the past decade for their potential presence in drinking water sources. This study focuses on the development of a hybrid system that combines the advantages of nanofiltration (NF) and homogeneous catalytic oxidation, which include compactness, operational facilitation, high treatment efficiency, and selective reaction capability. Iron(lll)-tetrasulfophthalocyanine (Fe-TsPc) was employed as a homogeneous metal catalyst to degrade bisphenol-A (BPA), a representative EDC. The treatment efficiency of BPA as well as operational characteristics of the hybrid system was investigated to examine the applicability of this technique to decrease the concentration of EDCs in drinking water. Fe-TsPc homogeneous catalyst revealed a remarkable activity in degrading BPA under acidic condition. The high rejection of Fe-TsPc catalyst in the feed stream by the membrane for its large molecular weight (976 Da) and functional group (SO3(-) X4) allowed the continuous use of the catalyst for BPA oxidation reaction. The NF with Fe-TsPc/H2O2 hybrid system turned out to have higher BPA treatment efficiency comparing with the NF-only system since the hybrid system reduced BPA concentration in the feed stream by catalytic destruction of BPA as well as it mitigated concentration polarization on the surface of the membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.