Abstract

Using current wastewater treatment technologies, it can be challenging to remove the emerging contaminants (ECs) present in kitchen wastewater (KW) of complex compositions and high organic content. In this study, biochar, derived from straw, was modified as an adsorbent to remove ECs such as bisphenol A (BPA), tetracycline (TC) and ofloxacin (OFL) from a complex KW system. An alkali-modified biochar, having larger specific surface areas and stronger hydrophobicity, was found to exhibit a higher adsorption capacity, with more than 95% of the target ECs being removed. Indeed, in a static operation mode, the alkali-modified biochar had maximum adsorption capacities of 71.43, 101.01 and 54.05 mg/g for BPA, TC, and OFL, respectively. The adsorption kinetics and isotherms models indicated that the adsorption process was controlled by chemisorption, as well as the monolayer adsorption of contaminants onto the external and internal surfaces of the alkali-modified biochar. The adsorption of TC and OFL was significantly affected by the initial pH values of KW. However, the presence of different environmental factors (COD, NH4+ and PO43−) had little effects on the adsorption of the contaminants. The alkali-modified biochar was further tested in a fixed-bed column where the maximum dynamic adsorption capacities for BPA and OFL were 55 and 45 mg/g, representing about 75% and 83% of the static saturated adsorption capacities. These findings can be of major significance for the application of alkali-modified biochar in the removal of ECs from complex KW systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call