Abstract

The aim of this research was to valorize waste (sludge) from a drinking water treatment plant as a coagulant in the removal of dyes (methylene blue and crystal violet) from water and to prevent environmental issues associated with sludge storage. To accomplish this purpose, the response surface methodology based on a central composite design with five levels was implemented. In order to enhance the efficacy of the coagulation–flocculation process, three key operational variables were considered for optimization: the pH, coagulant dosage (mg/L), and initial dye concentration (mg/L). To achieve this, a quadratic polynomial model was established. According to the mathematical model that has been developed, it is predicted that the highest efficiency for removing dyes is 94.44%. This maximum effectiveness is reached when the pH is adjusted to 12.04, the coagulant dose is set at 87.044 mg/L, and the dye concentration of MB is maintained at 2.955 mg/L. Conversely, the best dye removal of CV was attained at 100% under the following conditions: pH = 12.045, a coagulant dosage of 2.955 mg/L, and a dye concentration of 2.955 mg/L. The R2 (98.44% and 95.80% for MB and CV, respectively) validated both models. In this work, the coagulant was characterized by the surface charge, FTIR, BET, and SEM analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call