Abstract

The mechanism for the removal of Zn(II) by using coal mine drainage sludge (CMDS) was investigated by spectroscopic analysis and observations of batch tests using model materials. Zeta potential analysis showed that CMDS25 (dried at 25 °C) and CMDS550 (dried at 550 °C) had a much lower isoelectric point of pH (pHIEP) than either goethite or calcite, which are the main constituents of CMDS. This indicates that the negatively charged anion (sulfate) was incorporated into the structural networks and adsorbed on the surface of CMDS via outer-sphere complexation. The removal of Zn(II) by CMDS was thought to be primarily caused by sulfate-complexed iron (oxy)hydroxide and calcite. In particular, the electrostatic attraction of the negatively charged functional group, FeOH–SO42−, to the dissolved Zn(II) could provide high removal efficiencies over a wide pH range. Thermodynamic modeling and Fourier transform infrared spectroscopy (FT-IR) demonstrated that ZnSO4 is the dominant species in the pH range 3–7 as the sulfate complexes with the hydroxyl groups, whereas the precipitation of Zn(II) as ZnCO3 or Zn5(CO3)2 (OH)6 through the dissolution of calcite is the dominant mechanism in the pH range 7–9.6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.