Abstract

The mechanisms of abiotic sequestration of Se(VI) and Se(IV) on a sample of coal waste rock collected from the Elk Valley, Canada and on three pure mineral species (i.e., siderite, pyrite, and sphalerite) present in coal waste rock were assessed using sterile batch testing under water-saturated, anoxic conditions. Only siderite removed measurable Se(VI) from the test solutions with ~90% removal after 100 d attributed to initial adsorption to the siderite surface as Se(VI) and subsequent reduction to Se(IV) and Se(0). In contrast to Se(VI), all samples removed Se(IV) from the aqueous solutions. The rate of Se(IV) removal was pyrite > siderite > waste rock > sphalerite. The waste rock sample removed Se(IV) from solution in two stages: up to ~40% of the aqueous Se(IV) was rapidly removed (by day 1) followed by slower removal of Se(IV) with up to ~97% removal after 99 d. Se(IV) removal is attributed to the adsorption of Se(IV) and subsequent reduction to Se(0) onto the siderite and pyrite phases of the waste rock. The initial (1 d) removal of Se(IV) by waste rock was characterized using a distribution coefficient (Kd) of 15.5 L/kg. Longer-term Se(IV) removal was fitted with zero and first order removal rates. The removal of Se(IV) by sphalerite was minor and deemed to have a minimal effect on Se sequestration in the waste rock. Desorption tests on waste rock showed that the fraction of sequestered Se susceptible to desorption decreased with time as adsorbed Se(IV) was reduced to insoluble Se(0). These findings show that abiotic Se sequestration can occur in saturated, anoxic zones in coal waste rock dumps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.