Abstract
The barium hexaferrite (BaFe12O19) containing magnetic poly(ethylene glycol dimethacrylate–vinyl pyridine), (mag-poly(EGDMA–VP)) beads (average diameter=53–212μm) were synthesized and characterized. Their use as an adsorbent in the removal of diethyl phthalate (DEP) from an aqueous solution was investigated. The mag-poly(EGDMA–VP) beads were prepared by copolymerizing of 4-vinyl pyridine (VP) with ethylene glycol dimethacrylate (EGDMA). The mag-poly(EGDMA–VP) beads were characterized by N2 adsorption/desorption isotherms (BET), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), elemental analysis, scanning electron microscope (SEM) and swelling studies. At a fixed solid/solution ratio, the various factors affecting the adsorption of DEP from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. The maximum DEP adsorption capacity of the mag-poly(EGDMA–VP) beads was determined as 98.9mg/g at pH 3.0, 25°C. All the isotherm data can be fitted with both the Langmuir and the Dubinin-Radushkevich isotherm models. The pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The thermodynamic parameters obtained indicated the exothermic nature of the adsorption. The DEP adsorption capacity did not change after 10 batch successive reactions, demonstrating the usefulness of the magnetic beads in applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.