Abstract

Climate change and the increase in the availability of nutrients in aquatic environments have increased the occurrence of cyanobacterial blooms which can produce cyanotoxins such as cylindrospermopsin (CYN). Activated carbon adsorption have been proved to be efficient for CYN removal. In the present study, a carbon with high CYN adsorption capacity was identified between two granular activated carbons. For this carbon was estimated the operating time of a full-scale granular activated carbon column under different empty bed contact times (EBCT). The fixed-bed breakthrough was estimated using the Homogeneous Surface Diffusion Model (HSDM). Wood carbon showed greater capacity to remove CYN. The experimental equilibrium data best fitted Langmuir isotherm model, in which wood carbon had a maximum adsorption capacity of 3.67 μg/mg and Langmuir adsorption constant of 0.2791 L/μg. The methodology produced satisfactory results where the HSDM simulated the fixed-bed breakthrough with a coefficient of determination of 0.89, to the film diffusion coefficient (Kf) of 9 × 10−6 m/s and surface diffusion coefficient (Ds) of 3 × 10−16 m2/s. It was observed that the increase in EBCT promotes a reduction in the carbon use rate. The best carbon use rate found was 0.43 kg/m3 for a EBCT of 10 min and breakthrough time of 183.6 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.