Abstract

The toxic cyanides in gold cyanide residues produced in the cyanidation process of gold extraction threaten environmental safety and inhibit the recovery of valuable metals. In this study, the removal of cyanide through the persulfate-advanced oxidation process was investigated, and heat activation and ultrasonic activation were tested for cyanide removal. The results showed that cyanide in cyanide residue could be removed by 2.0 wt.% potassium persulfate at pH 10.0 after 60 min reaction with a removal efficiency of 53.47%. The removal efficiency increased to 62.18% at T = 60 °C for heat activation and 74.76% with an ultrasonic power of 100% for ultrasonic activation. The cyanide content in the toxic leaching solution of the residue after the ultrasonic-activated persulfate-advanced oxidation process (3.84 mg/L) reached the national standard of China. Two kinds of free radical scavengers, tert-butanol and methanol, were used to investigate the generation of free radicals. The results showed that both SO4•− and HO• were produced and accelerated the oxidation of cyanide, and HO• played a major role under alkaline conditions. According to XPS analysis, the oxidation of ultrasonic-activated persulfate focused on cyanide removal rather than pyrite in cyanide residue. More cyanides were transferred from the cyanide residue to the liquid phase, leading to the high efficiency of ultrasonic activation. The ultrasonic-activated persulfate-advanced oxidation process has potential application prospects for the treatment of gold cyanide residues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call