Abstract

Cyanide contamination in steel industry wastewater is a long-standing environmental problem. The present work demonstrates the usability of coke breeze, a carbon rich by-product of steel industry for successful adsorption of free cyanide from the wastewater. The coke breeze was characterized by scanning electron microscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Elemental analysis by energy dispersive X-ray clearly showed the presence of elemental nitrogen after adsorption of cyanide. XRD and FTIR analyses confirmed the cyanide adsorption on coke breeze matrix. pHzpc of the adsorbent was found to be 7.4. Maximum Langmuir adsorption capacity of coke breeze for cyanide was 12.3 mg/g at pH 7 and 298 K. Adsorption kinetics revealed that cyanide concentration was reduced rapidly in initial two hours and slowly thereafter. Continuous column experiments were conducted to observe the scalability of the process using real life steel plant wastewater. First principle based pore diffusion model was used to quantify the performance of continuous column experiments and relevant model parameters were estimated. Using these parameters a complete scale up study was undertaken for treatment of actual steel plant wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.