Abstract

AbstractBACKGROUNDCr(VI) is highly migratory and toxic, and long‐term exposure to Cr(VI) is likely to cause cancer, teratogenesis and mutagenicity. Therefore, the removal of Cr(VI) in polluted wastewater is the key to ensure the safety of water quality. In this study, a composite material consisting of nanoscale zero‐valent iron (NZVI) particles supported on biochar derived from starch (NZVI/BC) was prepared via carbonizing the mixture of starch and ferric nitrate in inert gas and used for removal of Cr(VI) from solution. The effects of NZVI/BC dosage, initial pH and reaction temperature on the removal efficiency of Cr(VI) were investigated.RESULTSThe results revealed that H2 and CH4 originating from the decomposition of starch acted as reducing agents for in situ generation of NZVI from Fe precursors. The removal efficiency of Cr(VI) was strongly dependent on dosage, pH and reaction temperature. Higher dosage, lower pH value and higher temperature led to an increase in Cr(VI) removal efficiency. Pseudo‐second‐order kinetics was suitable to describe the process of Cr(VI) removal by NZVI/BC.CONCLUSIONSNZVI/BC could be a potential and effective material for removal of Cr(VI) from solution. © 2022 Society of Chemical Industry (SCI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.