Abstract

This work presents a novel milling strategy for complex pocket machining by integrating radius-varying trochoidal (RVTR) toolpath with contour parallel (CP) toolpath. Based on a quantitative analysis on the fluctuation of material removal rates (MRR), the proposed strategy is able to precisely identify critical regions from complex pocket geometries, and then by integrating flexible trochoidal radius with adaptive trochoidal step, the proposed approach is able to integrate the RVTR toolpath into CP toolpath under a consistent transition of material removal rate. Moreover, by applying RVTR toolpath, the cutting force can be maintained constantly when machining critical regions. Comparing with the trochoidal milling function available with current mainstream CAM software, experimental investigation has shown that the proposed RVTR-CP toolpath integration strategy offers a better machining condition with minimized fluctuation of cutting forces. Moreover, the total length of toolpath is decreased considerably and hence the machining efficiency is greatly improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call