Abstract

Polysaccharides are an important class of materials that are often exploited in the fields of food, agriculture, biomedical engineering and wastewater treatment owing to their unique and tunable properties. In this work, we utilize an inexpensive and sustainable extracellular polysaccharide salecan (EPS), which is produced by bacterium Agrobacterium sp. ZX09, as a hydrogel matrix, poly(3-sulfopropyl methacrylate potassium salt) (PSM) as side chains to fabricate EPS-grafted-PSM adsorbents through a simple one-pot approach. Scanning electron microscope, X-ray diffraction, Fourier transformed infrared spectroscopy, rheometry and thermogravimetry were conducted to characterize the physicochemical properties of resultant adsorbents. We noticed that EPS not only served as the host chains of network to adjust the water uptake ability of adsorbents, but also endued them with tunable polarity. Further, the adsorption behaviors of developed adsorbents to copper ions (Cu2+) were explored: these gels present high absorption ability for Cu2+ through a chemical adsorption process which well described by Freundlich isotherm and pseudo-second-order kinetic models. In summary, the approach exhibited in this work opens a new avenue to design polysaccharide-based materials for Cu2+ adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call