Abstract

Liquid Surfactant Membrane (LSM) as an alternative extraction technique shows many advantages without altering the chemistry of the oil process in terms of efficiency, cost effectiveness and fast demulsification post extraction. Copper (Cu) extraction from aqueous solution using Liquid Membrane (LM) technology is more efficient than the sludge-forming precipitation process and has to be disposed of in landfills. In this chapter, a liquid surfactant membrane (LSM) was developed that uses kerosene oil as LSM ‘s key diluent to extract copper ions as a carrier from the aqueous waste solution through di-(2-ethylhexyl) phosphoric acid (D2EHPA). This technique has several benefits, including extracting one-stage extracts. The LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM process, various parameters have been studied such as carrier concentration, treat ratio (TR), agitating speed and initial feed concentration. After finding the optimum parameters, it was possible to extract Cu up to 95% from the aqueous feed phase in a single stage extraction.

Highlights

  • Increased use of metals and chemicals in process industries has led to the production of large volumes of effluent containing high levels of toxic heavy metals and their presence, due to their non-degradable and persistent existence, poses problems with disposal

  • It should be noted that the di-(2-ethylhexyl) phosphoric acid (D2EHPA) concentration in the membrane process was observed to decrease the rate of copper extraction in the range of 2% (v / v) to 4% (v/v) under optimum conditions for copper extraction from nitrate solution, as observed by [2, 23]

  • An improvement of 2 percent from an economic point of view is very low, so 6 percent of D2EHPA is used in the experiments

Read more

Summary

Introduction

Increased use of metals and chemicals in process industries has led to the production of large volumes of effluent containing high levels of toxic heavy metals and their presence, due to their non-degradable and persistent existence, poses problems with disposal. World Health Organization (WHO)-based aluminum, cobalt, chromium, iron, cadmium, nickel, zinc, copper, lead and mercury are the most toxic metals [1–3]. Leather tanning, mining, electroplating, textile dyeing, coating operations, aluminum conversion, and pigments are the main industries that introduce water contamination by chromium. Owing to the decreasing availability of natural resources and the rising contamination in the atmosphere, the removal of ions from their effluents has taken on greater significance in the recent past [4–6]. The removal of copper (Cu) from aqueous solutions requires an effective method (toxic ions if they are beyond the WHO limits). The minimization of liquid effluents containing hazardous metals is a general concern

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.