Abstract

One step polyacrylamide gel method was used to synthesize the ZnO/MgO adsorbents and the adsorption behavior with Congo red (CR) from wastewater was extensively investigated. Various advanced techniques were applied to confirm the ZnO/MgO adsorbents consist of Zn, C, Mg and O elements and do not contain any other impurity elements. With the increase of MgO content, the morphology of ZnO/MgO adsorbent changes from the agglomeration of large particles to evenly dispersed fine particles and then to icicle structure. Results demonstrated that the adsorption process of ZnO/MgO adsorbents was significantly affected by the change in initial dye solution pH, initial adsorbent dosage, contact time and reaction temperature. The optimum pH, adsorbent dosage, contact time and reaction temperature is 9.81, 2 g /L, 65 min and 293 K, respectively. The maximum adsorption capacity of ZnO/MgO (nZnO:nMgO = 8:2) adsorbents (295.138 mg/g) for the adsorption of CR dye was approximately double that of previous reports (125 mg/g). The adsorption equilibrium data are well fitted by the Freundlich and Langmuir isotherm models. Thermodynamic studies indicate that the adsorption process of ZnO/MgO adsorbents is an exothermic process. Based on the experimental and theoretical analysis, the adsorption mechanism for the ZnO/MgO adsorbents consisted of hydrogen bonding, n-π interaction and electrostatic interaction. The present work pioneers the potential application of ZnO/MgO adsorbents for the adsorption of CR dye and further provides experimental evidence for the synthesis of other adsorbents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.