Abstract
The emergence of antibiotics in water has been globally recognized as a critical pollution issue. Antibiotics (such as Ciprofloxacin (CPFX) pose a serious threat to humans and to the ecosystem due to its accumulation in water sources which can lead to chronic health problems and endanger aquatic life. It is therefore crucial to properly remove them from water. In this work, a nano-composite adsorptive membrane based on Zirconium Phosphate (ZrP) adsorbent supported on Polyethersulfone (PES) was synthesized and evaluated for the removal of CPFX from synthetic aqueous solutions. The membranes described here showed a very high antibiotic removal rate. The effect of various parameters such as the initial concentration of the antibiotic, the adsorbent dosage, contact time, pH, and temperature was studied. The equilibrium data were found to reasonably best fit with the Temkin isotherm model. The membranes showed a high ciprofloxacin removal (99.7%) as opposed to (68%) when PES membrane alone was used. Moreover, a significant improvement in the membrane's water flux (100.84 L/m2.h) and permeability (97.62 L/m2.hr.bar) were noticed as opposed to pure PES membrane's flux and permeability. The adsorptive membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET). The results confirmed the successful formation of ZrP nanoparticles adsorbent within the membrane matrix, and with enhanced hydrophilic properties. The membrane was successfully regenerated and reused up to 5 times. The results of this work showed the potential of such membranes for the removal of ciprofloxacin and at a high efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.