Abstract

The quality of water is significantly impacted by the presence of Cr6+ and Ni2+ ions. This study investigates the effectiveness of a flow-by porous graphite electrode cell in removing these contaminants from simulated industrial wastewater. We explore the impact of various factors on the removal process, demonstrating the method's potential for efficient removal. The initial concentration of nickel and chromium ions (20 to 80 mg/l and 20 to 100 mg/l, respectively), the feed flow rate (0.28 to 1.11 ml/s), current density (0.2 to 2.25 mA/cm2) and pH all influence the removal rate and efficiency. A higher feed flow rate negatively affects the removal efficiency of both Ni2+ and Cr6+ ions. Nickel removal efficiency decreased by 34.9% at 20 ppm and 26% at 80 ppm, representing the highest and lowest reductions in efficiency, respectively. Chromium removal efficiency decreased by 19% at 100 ppm and 6.5% at 50 ppm, indicating the highest and lowest reductions in efficiency, respectively, under the same flow rate change. Under optimal conditions, the removal efficiency for Ni2+ was 99.47% after 15 min of operation at a current density of 1.96 mA/cm2, a flow rate of 0.28 ml/s, and a pH of 8 and the removal efficiency for Cr6+ was 99.97% after 10 min of operation at a current density of 2.25 mA/cm2, a flow rate of 0.28 ml/s, and a pH of 2. The flow-through porous electrode system achieves efficient heavy metal removal with operating costs of 0.24 USD/m3 for nickel and 0.38 USD/m3 for chromium at optimal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.