Abstract
he results of the experiments showed that bed weight, flow rate, and initial metal ion concentration all play a role in the removal of Cr (III) and Fe (II). The optimized break through curve was obtained at 36cm bed height and 10ml/min for chromium where 97.5 to 100% removal was observed at a saturation time of 500-600 min. With the increase in bed height from 12cm to 36cm, both the breakthrough and saturation times for Cr (III) increased. The break through time at 12cm, 24cm, 36cm and 10ml/min for Cr (III) were 70 min, 105 min, and 35 min respectively. The saturation time for Cr (III) at 12cm, 24cm, 36cm and 10ml/min were 460 min, 490 min, and 500 min respectively. Similarly, the break through time for Fe (II) at 12cm, 24cm, 36cm and 10ml/min were 70 min, 80 min, and 100 min respectively. At 12cm, 24cm, 36cm, and 10ml/min, the saturation time for Fe (III) was 340 minutes, 360 minutes, and 430 minutes, respectively. Overall in the column performance comparison between synthetic solution and industrial effluents for chromium, synthetic solution performance was more superior at fixed volumetric flow rates of 10 ml/min and bed heights ranging from 12 cm to 36 cm But the reverse trend was observed in case of fixed bed heights of 36 cm (150 g) and variation of volumetric flow rates from 10ml/min to 30ml/min which indicates that industrial effluent performance was superior when compared to synthetic solution for heavy metal removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.