Abstract
This study aimed to investigate the synergistic effect of the cold atmospheric plasma (CAP) and heterogeneous photocatalytic processes in an aqueous solution to enhance water purification efficacy and reduce the energy cost required by CAP. 0.1% Ag/TiO2-reduced graphene oxide (rGO) nanoparticles (NPs) photo-composite were prepared and fully characterized. Data showed that Ag nanoparticles and the rGO play an important role in increasing the efficiency of the whole treatment process and the photo-composite (0.1% Ag/TiO2-1% rGO at 400 °C) revealed the highest phenol removal rate with excellent reusability. Also, complete inactivation (~ 5log10 reduction) of both E. coli and S. aureus by NPs was observed without CAP exposure, whereas a minimal effect (0.1–0.5 log10) on viruses (Adenovirus (AdV), rotavirus, and ɸX174) was observed after 10 min incubation. Interestingly, the photocatalytic virus inactivation test was promising, as it resulted in > 4.7log10 reduction of AdV at 2 min treatment, whereas < 1log10 could be reduced using only CAP at the same treatment time. Accordingly, we believe that this work could provide new insights into how the synergy between CAP and 0.1% Ag/TiO2-1% rGO photo-composite in aqueous media imposes a great potential for environmental applications, such as water purification and microbial inactivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.