Abstract
To improve the adsorption performance of Cd(II) by maifanite in constructed rapid infiltration systems (CRIS), Mg-layered double hydroxides (MgAl-LDHs, MgFe-LDHs) are prepared by a co-precipitation method and in-situ coated on the surface of original maifanite. Characterization of the successful LDHs-coating modification is realized by the following: scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Brunauer Emmett Teller (BET). In the purification experiments, the average removal rates of Cd(II) were 97.66% for maifanite/MgAl-LDHs and 97.54% for maifanite/MgFe-LDHs, approximately 11% greater than for the original maifanite. Isothermal adsorption experiments and adsorption kinetic experiments were conducted to explore the Cd(II) adsorption mechanism. The modified maifanite demonstrated a higher Langmuir adsorption capacity and stronger surface bond energies compared to the original maifanite. The adsorption type of Cd(II) by maifanite/Mg-LDHs and original maifanite was monolayer adsorption based mainly on chemical adsorption. Furthermore, the extracellular polymeric substances and dehydrogenase activities of the microorganisms were measured and analyzed to study the effect of microorganisms on the removal of Cd(II) in the test columns. High-throughput sequencing technology was also applied to analyze the composition and diversity of bacterial communities. Based on a simple estimation, the synthesis cost of maifanite/MgAl-LDHs was only ¥ 0.33/Kg. In brief, maifanite/Mg-LDHs is an efficient and economical substrate for a CRIS for Cd(II) removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.