Abstract

Organic materials, including carbon, exist inside the transmission electron microscope (TEM) chamber and are adsorbed onto samples under observation during TEM. When these adsorbed organic materials are irradiated by an electron beam, the adsorbed gas is decomposed. Carbon atoms remain on the sample and bond with each other forming a material with an amorphous structure. Due to the carbon deposition on the observation area of the sample, it is contaminated and the TEM image quality is decreased. Ar was introduced into environmental TEM (ETEM) to purge organic material from the sample chamber to reduce contamination growth. After Ar gas was introduced, the contamination was gradually removed. The contamination removal rate was dependent on the Ar pressure. Moreover, it was clear that Ar was ionised by electron beam irradiation and the Ar ions were produced in the ETEM during electron beam irradiation. It is proposed that the Ar ions removed the carbon contamination. LAY DESCRIPTION: Organic materials, including carbon, exist inside the transmission electron microscope (TEM) chamber and are adsorbed onto samples under observation during TEM. When these adsorbed organic materials are irradiated by an electron beam, the adsorbed gas is decomposed. Carbon atoms remain on the sample and bond with each other forming a material with an amorphous structure. Due to the carbon deposition on the observation area of the sample, it is contaminated and the TEM image quality is decreased. Ar was introduced into environmental TEM (ETEM) to purge organic material from the sample chamber to reduce contamination growth. After Ar gas was introduced, the contamination was gradually removed. The contamination removal rate was dependent on the Ar pressure. Moreover, it was clear that Ar was ionised by electron beam irradiation and the Ar ions were produced in the ETEM during electron beam irradiation. It is proposed that the Ar ions removed the carbon contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.