Abstract

Legumes such as clover are cost-effective and environmentally friendly components of strategies for remediating soils contaminated with heavy metals or organic pollutants. However, the mechanisms by which clover remediates co-contaminated soils are unclear. The present study explored the effects of phytoremediation by clover on pollutant removal and the microbial community in soil co-contaminated with cadmium (Cd) and polychlorinated biphenyls (PCBs). After 18 months of phytoremediation, Cd removal increased from 20.25 % in the control to 40.65 % in soil planted with clover, while PCB removal increased from 29.81 % to 60.02 %. High-throughput sequencing analysis showed that the relative abundances of the bacterial phylum Proteobacteria and the diazotrophic genus Rhizobium increased significantly after phytoremediation. Random forest analysis showed that bacterial and diazotrophic diversity significantly influenced Cd and PCB removal. Furthermore, co-occurrence network and correlation analyses revealed that Rhizobiales and Micromonosporales were the main bacteria associated with Cd removal, while Rhizobiales, Burkholderiales, and Xanthomonadales were identified as the main degraders of PCBs. PICRUSt functional prediction demonstrated that the gene bphC, which is related to PCB degradation, was significantly increased in the rhizosphere soil in the presence of clover. These results provide a better understanding for further studies of remediation efficiency by clover, rhizosphere microbial response and remediation mechanisms of co-contaminated soils under in situ conditions in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.