Abstract

The free surface of aluminum melt, during stirring under different rotation speeds in unbaffled and baffled crucibles, was simulated numerically using a RANS turbulence model coupled with a particle-tracking method. The effect of mechanical stirring of Al melts containing 0.3, 0.7, and 4.5 wt pct Mg in unbaffled and baffled crucibles on the rate of elimination of bifilms from the melt was also investigated using a reduced pressure test. The results showed that the stirring increased the rate of removal of bifilms from the melt due to an increase in the rate of formation of cracks on the bifilms. Using baffles in the crucible accelerated the rate of removal of bifilms by changing the pattern of movement of bifilms in the melt. The critical stirring speeds, above which the oxide layer on the Al melt could submerge into the bulk liquid, were determined by the simulation. It was confirmed by the experimental results to be about 158 and 420 RPM for the unbaffled and baffled crucibles, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call