Abstract

Asymmetric polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared by a phase inversion method using dimethylacetamide (DMAc) and a mixture of water/LiCl as solvent and a nonsolvent additive, respectively. The prepared membranes were characterized by scanning electron microscopy (SEM) for observing its microstructures and by a gas permeation method for measuring its surface porosity, pore size, and pore size distribution. Wetting pressures of the dry hollow fiber membranes were also measured. Using the prepared PVDF hollow fiber membranes, a membrane module was fabricated for removal of benzene/toluene from water. Effects of various operating parameters such as downstream vacuum levels, feed temperatures, and feed flow rates on performances of the module were investigated experimentally. The benzene/toluene removal was achieved over 99% under an optimal operating condition. Mass transfer of benzene or toluene removal is controlled not only by the liquid phase resistance but also by the membrane and gas phase resistances. Benzene and toluene can be removed from water simultaneously with no adverse coupling effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call