Abstract

This study assessed the aqueous benzene removal capacity of a polymeric adsorbent, based on an amphiphilic material, in a batch experiment. Two types of polystyrene-block-poly(N-isopropylacrylamide) have structures containing a hydrophobic core and hydrophilic shell. The encapsulation mechanism of benzene by a polymeric adsorbent was investigated, and found to be attributable to the Van der Waals interactions between the benzene aromatic ring and the hydrophobic core of the adsorbent. The equilibrium data were analyzed using the Langmuir and Freundlich adsorption isotherms, and found to be a good fit to both. The maximum adsorption capacity for benzene by the polymeric adsorbent was found to be 194.53 mg/g. The kinetic data followed a pseudo-first-order kinetic model. Polystyrene-block-poly(N-isopropylacrylamide) showed the potential to be an effective adsorbent for application to wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.