Abstract
Chemical treatments of paraffin and asphaltene deposition by means of cleaning fluids were carried out in this research project. Research focused on the characterization of asphaltene and paraffin materials and dissolution of asphaltene and paraffin deposits using surfactant/micellar fluids developed early in the project. The key parameters controlling the dissolution rate were identified and the process of asphaltene/paraffin dissolution were examined using microscopic apparatus. Numerical modeling was also carried out to understand the dissolution of paraffin deposits. The results show that fused chemical reaction systems are a promising way of removing paraffin deposits in subsea pipelines. The fused system may be in the form of alternate pulses, emulsions systems or encapsulated catalyst systems. Fused reaction systems, in fact, are extremely cost-effective--less than 10% of the cost of replacing entire sections of the blocked pipeline. The results presented in this report can have a real impact on the petroleum industry and the National Oil Program, if it is realized that the remediation technologies developed here can substantially delay abandonment (due to asphaltene/paraffin plugging) of domestic petroleum resources. The report also sheds new light on the nature and properties of asphaltenes and paraffin deposits which will ultimately help the scientific and research community to develop effective methods in eliminating asphaltene/paraffin deposition problems. It must also be realized that asphaltene remediation technologies developed and presented in this report are a real alternative to aromatic cleaning fluids currently used by the petroleum industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.