Abstract

The production of nano zero-valent iron nanoparticles, using the extract from natural products, increased in recent years as it represents green and environmentally friendly method. Synthesis of green zero-valent iron nanoparticles (nZVI) using oak, mulberry and cherry leaf extracts (OL-nZVI, ML-nZVI and CH-nZVI) proved to be a promising approach for As(III) and Cr(VI) removal from aqueous solutions. The oak, mulberry and cherry leaves were chosen because of their high oxidant capacity as an important property for the production of the nZVIs. Also, oak, mulberry and cherry trees are widely distributed and easy to find in Vojvodina, the north province of Serbia. Characterization of produced green nZVI materials confirmed the formation of nanosize zero-valent iron particles within the size of 10–30nm. Nanoparticles were spherical in shape and represented stable material with minimum agglomeration observed by TEM and SEM morphology measurements. Batch experiments revealed that the adsorption kinetics followed pseudo-second order rate equation. The obtained adsorption isotherm data could be well described by the Freundlich model. In addition, investigated pH effect showed that varying the initial pH value had a great effect on As(III) and Cr(VI) removal. This study indicated that nZVI could be produced by low cost and non toxic method with oak, mulberry and cherry leaf extracts and potentially be used as a new green material for remediation of water matrices contaminated with As(III) and Cr(VI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.