Abstract

A new method has been developed to remove arsenite and arsenate ions from aquatic systems by using basic yttrium carbonate (BYC). Various parameters such as pH, anion concentration and reaction time were studied to establish optimum conditions. The removal by adsorption of arsenite and arsenate ions was found to be > 99% depending on initial concentration in the pH range of 9.8–10.5 and 7.5–9.0, respectively. The arsenate was also removed by precipitation at pH lower than 6.5 due to dissolution of BYC. The kinetic study shows that the adsorption follows the first order reaction. The adsorption isotherms of these anions were also studied at different temperatures. The equilibrium data fit well in the Langmuir model of adsorption. The Langmuir constants were calculated at different temperatures and the adsorption capacity for both anions increases with temperature. Anions such as Cl −, Br −, I −, NO − 3 and SO 2− 4 have no interference in the removal process. The mechanism of the removal by adsorption was interpreted in terms of the surface charge and ligand orientation of BYC. The method was applied on synthetic wastewaters. Arsenite was oxidized to arsenate by 3% hydrogen peroxide. The yttrium was regenerated as basic yttrium carbonate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call