Abstract

ABSTRACTIn the present study arsenic contaminated simulated water and groundwater was treated by the combination of biological oxidation of tri-valent arsenite [As (III)] to penta-valent arsenate [As (V)] in presence of Acidothiobacillus ferrooxidans bacteria and its removal by adsorptive filtration in a bioreactor system. This method includes the immobilisation of A.ferrooxidans on Granulated Activated Carbon (GAC) capable of oxidising ferrous [Fe (II)] to ferric [Fe (III)]. The Fe (III) significantly converts the As (III) to As (V) and ultimately removed greater than 95% by the bed of GAC, limestone, and sand. The significant influence of Fe (II) concentration (0.1–1.5 gL−1), flowrate (0.06–0.18 Lh−1), and initial As (III) concentration (100–1000 µgL−1) on the arsenic removal efficiency was investigated. The simulated water sample containing the different concentration of As (III) and other ions was used in the study. The removal of other co-existing ions present in contaminated water was also investigated in column study. The concentration of arsenic was found to be <10 µgL−1 which is below Maximum Contaminant Level (MCL) as per WHO in treated water. The results confirmed that the present system including adsorptive-filtration was successfully used for the treatment of contaminated water containing As (III) ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.