Abstract

The removal rate of antimony from liquid copper by using CuCl–Na2CO3 fluxes was measured at 1423 K with argon gas atmosphere. The addition of Na2CO3 to CuCl flux was relatively effective for the removal of antimony. The concentration of antimony in liquid copper largely decreased with time or with increasing Na2CO3 content in flux. About 99.8% of antimony was removed from liquid copper during 15 min. The metal weight and oxygen content of metal increased with time and with increasing Na2CO3 content in flux. These behaviors were mainly due to the decomposition of Cu2O formed in flux. The antimony in copper was oxidized.According to the mass balance, about 60% of the removed antimony from liquid copper vaporized from the CuCl–23.8mass%Na2CO3 flux. The chlorination reaction between formed antimony oxide and CuCl might result in the vaporization of antimony from flux.According to the above-mentioned experimental results, the CuCl–Na2CO3 fluxes were effective for the removal and recycling of antimony from liquid copper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.