Abstract

In the present work, the influence of the water matrix on the removal of antibiotic resistant bacteria during the electro-disinfection with diamond anodes was studied, paying special attention to the disinfection efficiency and the prevention of the formation of hazardous disinfection by-products. This will allow to evaluate if electrolysis is more suitable as pretreatment of the main pollution source or as tertiary treatment of urban wastewater. To do this, electrolysis of synthetic wastewater rich in ammonium (simulating the effluent of an oxidation pond) and hospital urine intensified with three different bacteria (E. faecalis, K. pneumoniae, and E. coli) were carried out. Results show that the disinfection efficiency is higher in the synthetic wastewater for all the bacteria tested, but chlorate is formed as disinfection by-product. Electrogenerated hypochlorite and chloramines are the main responsible species for bacteria depletion. Presence of organics (urea, creatinine and uric acid) as additional ammonia precursors in hospital urine leads to the well-known breakpoint reaction with electrogenerated active chlorine, yielding an increasing concentration of chloramines. This helps to prevent the formation of chlorate in hospital urine because hypochlorite is mainly wasted in the oxidation of organics and the formation of chloramines. These results are of a great significance because they indicate that antibiotic resistant bacteria can be efficiently removed in complex matrixes without the formation of hazardous chlorine by-products if it is carried out as a pretreatment before discharge to WWTP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.