Abstract

As a problematic element in water systems, arsenic exists as As(III) and As(V). Adsorption techniques can be used to remove anionic As(V) as it is present as a polyatomic anion. In the case of As(III) which exists in zero-valent state under neutral pH, it can be also removed by adsorption after being converted into As(V). Many inorganic and organic materials have been examined as potential adsorbents for anionic As(V) removal. However, most exhibit relatively low adsorption capacities (<10 mg/g). The objective of this study is to examine As(V)-removal mechanism and practical potential of a PEI-coated bacterial biosorbent prepared from fermentation biowaste. The maximum As(V) uptake of the biosorbent was determined to be 62.99 mg/g by Langmuir model. The effects of various parameters including pH, biosorbent dosage, ionic strength and temperature were also examined. Kinetic and equilibrium models were used to interpret the experimental data mathematically. A 0.01 M NaOH solution was chosen as an effective As(V)-desorbing eluent for biosorbent regeneration. The adsorption capacity of the biosorbent remained above 85% over three successive cycles of adsorption and desorption. In conclusion, the biowaste-driven biosorbent is a promising anion adsorbent for treatment of As(V)-contaminated wasters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.