Abstract

The biofilter process is a relatively new technology that has been proven more cost-effective than traditional technologies for treating low-strength and some high-strength volatile organic compounds (VOCs) from waste gases. Acetone (AT) and methylacetate (MA) mixtures are commonly encountered from the manufacture of artificial rubber or polyurethane resin. This research attempts to employ a trickle-bed air biofilter (TBAB) for treating AT and MA mixtures under different influent carbon loadings. In the pseudo-steady-states, the elimination capacities of AT and MA increased but the removal efficiencies decreased with increased influent carbon loading. The removal efficiencies of MA were higher than those of AT showing that MA is a preferred substrate in the ATMA waste gas and the differences were enhanced at a high carbon loading. Greater than 95% AT removal and nearly complete MA removal were achieved with influent carbon loadings of AT and MA below 20 and 27 g m−3 h−1, respectively. The TBAB appears very efficient for treating ATMA emission with low to medium carbon loadings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call