Abstract
Sugarcane bagasse (SB) was used to produce a new bioadsorbent (STEA), drawing on circular economy concepts. STEA was synthesized using a two-step one-pot reaction, employing epichlorohydrin and triethylamine in the presence of N,N-dimethylformamide, without the use of a petroleum-based catalyst. The structure and surface of STEA were characterized by elemental C, H, N, and Cl analysis, X-ray diffraction, infrared spectroscopy, 13C solid-state nuclear magnetic resonance spectroscopy, thermogravimetric analysis, specific surface area and pore size distribution determination, and point of zero charge measurement. Batch adsorption and desorption tests were performed with the model dye Remazol Golden Yellow (RGY) RNL, a reactive anionic azo dye widely used in textile industry, to evaluate the potential reuse and application of STEA in a fixed-bed column for wastewater treatment. For batch adsorption, the best dose and agitation speed were 0.2 g L−1 and 50 rpm, respectively. STEA effectively removed RGY over a wide range of pH (2.00–10.00). The equilibrium time, maximum adsorption capacity (Qmax), and desorption efficiency (Edes) were 720 min, 369 mg g−1 (0.71 mmol g−1), and 49.5 %, respectively. The fixed-bed column fed with a spiked aqueous RGY solution could be operated for 415 min, with Qmax of 422 mg g−1 (0.81 mmol g−1) and Edes of 58.9 %. Batch and continuous experiments using real textile industry wastewater containing reactive azo dyes showed high color removal efficiency by STEA, with no interference of other compounds present in wastewater on adsorption of the reactive azo dyes (overshooting effect). The technology was validated in a relevant environment and achieved technology readiness level 5, showing potential to be upscaled. Therefore, STEA proved to be an efficient bio-based technology for application in tertiary treatment of real textile plant wastewater to remove reactive anionic azo dyes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.