Abstract

Many white grape cultivars have a nonfunctional VvMybA1 gene due to the presence of a 10-kb Gret1 transposon in its promoter. In this study, we successfully demonstrated removal of the 10-kb Gret1 transposon and functional restoration of a VvMybA1 allele in Vitis vinifera cv. Chardonnay through transgenic expression of Cas9 and two gRNAs simultaneously targeting two junction sequences between Gret1 LTRs and VvMybA1. We generated 67 and 24 Cas9-positive vines via Agrobacterium-mediated and biolistic bombardment transformation, respectively. While the editing efficiencies were as high as 17% for the 5' target site and 65% for the 3' target site, simultaneous editing of both 5' and 3' target sites resulting in the removal of Gret1 transposon from the VvMybA1 promoter was 0.5% or less in most transgenic calli, suggesting that these calli had very limited numbers of cells with the Gret1 removed. Nevertheless, two bombardment-transformed vines, which shared the same unique editing features and were likely derived from a singly edited event, were found to have the Gret1 successfully edited out from one of their two VvMybA1 alleles. The edited allele was functionally restored based on the detection of its expression and a positive coloring assay result in leaves. Precise removal of more than a 10-kb DNA fragment from a gene locus in grape broadens the possibilities of using gene editing technologies to modify various trait genes in grapes and other plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.