Abstract

This paper denotes the importance of operational parameters for the feasibility of ozone (O3) oxidation for the treatment of wastewaters containing 1,4-dioxane. Results show that O3 process, which has formerly been considered insufficient as a sole treatment for such wastewaters, could be a viable treatment for the degradation of 1,4-dioxane at the adequate operation conditions. The treatment of both synthetic solution of 1,4-dioxane and industrial wastewaters, containing 1,4-dioxane and 2-methyl-1,3-dioxolane (MDO), showed that about 90% of chemical oxygen demand can be removed and almost a total removal of 1,4-dioxane and MDO is reached by O3 at optimal process conditions. Data from on-line Fourier transform infrared spectroscopy provides a good insight to its different decomposition routes that eventually determine the viability of degrading this toxic and hazardous compound from industrial waters. The degradation at pH>9 occurs faster through the formation of ethylene glycol as a primary intermediate; whereas the decomposition in acidic conditions (pH<5.7) consists in the formation and slower degradation of ethylene glycol diformate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.