Abstract

In this study, DNA-functionalize-magnetic beads were investigated as sorbent materials for effective removing 1,2-benzanthracene (BaA) from water. In order to reveal the removal mechanism, the interaction mode between BaA and DNA was evaluated by using various characterization tools such as UV-visible and circular dichroism spectroscopy, fluorescence and resonance scattering spectroscopy, and agarose gel electrophoresis. In the presence of BaA, the melting temperature of DNA increased from 76.2 °C to 82.3 °C, which closely related to the intercalating of BaA. It was found that a part of the ethidium bromide (EB) binding sites to DNA were occupied by BaA in EB competing study. The results indicated that a new complex appeared between hsDNA and BaA, and the number of the binding sites (n) and the binding constants (KA) at different temperatures were obtained. DNA binding saturation value (≈0.80) was obtained by resonance scattering spectra study. BaA could be enriched and removed by DNA-functionalize-magnetic beads via the intercalation, and the removal efficiency was 97.73% when the initial concentration was 2.45 x10−6 mol·L−1 (559.31 μg/L).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.