Abstract

Advanced oxidation process (AOPs) can be used for the treatment of harmful algal blooms (HABs). In this study, two systems of Fe2+/sodium percarbonate (Fe2+/SPC system) and Fe2+/sodium persulfate (Fe2+/PS system) were established to explore the removal mechanism of Microcystis aeruginosa (M. aeruginosa). The results indicated that the Fe2+/SPC system catalyzed H2O2 to generate a large amount of [Formula: see text] for oxidation by Fe2+ and formed Fe3+ to promote the flocculation of M. aeruginosa. The persulfate was activated by Fe2+ to generate [Formula: see text] with super-oxidizing properties, and Fe3+ was generated to realize the oxidation and flocculation of M. aeruginosa in the Fe2+/PS system. Compared with the traditional method in which the pre-oxidation and flocculation processes are carried out separately, the method in this study effectively improves the utilization rate of the flocculant and the removal effect of M. aeruginosa. The absolute value of zeta potential of Fe2+/PS system (|ζ|= 0.808mV) was significantly lower than that of Fe2+/SPC system (|ζ|= 21.4mV) (P < 0.05), which indicated that Fe2+/PS system was more favorable for the flocculation of M. aeruginosa cells than the Fe2+/SPC system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.