Abstract

We give new sufficient and necessary criteria guaranteeing that a hereditary graph property can be tested with a polynomial query complexity. Although both are simple combinatorial criteria, they imply almost all prior positive and negative results of this type, as well as many new ones. One striking application of our results is that every semi-algebraic graph property (e.g., being an interval graph, a unit-disc graph etc.) can be tested with a polynomial query complexity. This confirms a conjecture of Alon. The proofs combine probabilistic ideas together with a novel application of a conditional regularity lemma for matrices, due to Alon, Fischer and Newman.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.