Abstract

Wastewater reuse has been widely discussed as an essential strategy to minimize the consumption of drinking water for less noble purposes. During biological wastewater treatment, organic matter is converted into a complex matrix containing a variety of soluble organic compounds. The objective of the present study was to evaluate the removal efficiency of the residual organic load in the final effluent from wastewater treatment plant with a conventional activated sludge process by different coagulants and parameters of coagulation-flocculation process, using dissolved organic carbon (DOC) concentration, molecular weight (MW) size distribution by size exclusion chromatography (SEC) coupled to mass spectrometry (MS), and zeta potential (ZP) analyses. The results showed a DOC removal efficiency up to 45% with iron chloride, and of 38% for aluminum sulfate and 31% for PAC coagulants. ZP was also measured during the procedures and authors conclude that the ZP also does not have a determining role in these removals. SEC and MS assessment was able to detect changes on secondary effluent molecular weight distribution profile after effluent coagulation-flocculation, this technique might be a promising tool to understand the composition of effluent organic matter and be helpful to estimate and optimize the performance of wastewater effluents treatment processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.