Abstract

This study analyzed the removal effect of various doses of polyaluminum chloride (PACI) on wastewater treatment plants at pH 7. The sewage plant's secondary effluent organic matter (EfOM) separates into four components: hydrophobic base (HOB), hydrophilic (HI), hydrophobic acid (HOA), and hydrophobic neutral (HON). The removal effect for various forms of organic waste is optimum at 16 mg/L and that halogenated acetic acids (HAAs) and trihalomethanes (THMs) are formed simultaneously. After PACI treatment, hydrophobic organic compounds were converted to humic acid (HA), fulvic acid (FA), soluble microbial products (SMPs), and other HI organic compounds, increasing the amount of HAAs produced by HI fractions. Removal rate of hydrophobic organic compounds, particularly HON, is 92.8% when using PAC. Moreover, after EfOM coagulation, most HAAs are trichloroacetic acid (TCAA), followed by bromochloroacetic acid (BCAA) and bromodichloroacetic acid (BDCAA). Only HOB can produce monochloroacetic acid (MCAA), whereas HA and SMPs with HOA are primary components of dichloroacetic acid (DCAA). The toughest removable byproduct of THMs is CHBr3, and after condensation of each THM component, only HOA and HON produce CHBr3, while HI produces only a minimal quantity of CHBrCl2 and CHCl3.This finding is critical for understanding how disinfection byproducts are produced after chlorinating EfOM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call