Abstract

Alum sludge, which is a waste product from a potable water treatment process, was tested as an inexpensive alternate adsorbent for phosphorus in wastewater. The sludge was composed dominantly of sand size aggregates, and could remain stable in aqueous media. The majority of reactive Al in alum sludge was present as an amorphous phase, and seemed to be the major absorbent for P. The batch sorption test showed that the removal of P was influenced by the solubility of Al, Fe and organic carbon depending on pH condition. The acidic condition favored the removal of P, and there was a side effect in the P removal process such as dissolution of Al and organic C at acidic (pH < 4) and alkaline (pH < 8) conditions. The pH range from 4 to 6 was effective for all inorganic and organic phosphates with a low solubility of Al and organic C. The maximum adsorption capacity of alum sludge was calculated as 25,000 mg/kg for orthophosphate, and followed the order: orthophosphate > pyrophosphate > triphosphate > organic phosphate (adenosin). From the column test with a 30 mg/L orthophosphate solution at a flow rate of 3.0 ml/min, the alum sludge removed P to less than 1.0 mg/L over 250 pore volumes at initial pH 4, and 200 pore volumes at initial pH 5, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call