Abstract

Abstract In this study, iron concentrate and blast furnace dust were used as raw materials, and graphite was used as a reducing agent for mixing and briquetting. The briquettes were roasted in a high-temperature tube furnace at different temperatures and held for a certain time to simulate the pre-reduction sintering process. The effects of dust content, reduction time, and reduction temperature on the removal rate of zinc, potassium, and sodium and the metallization rate of the pre-reduction sintered products were investigated. The reduced briquettes were characterized by X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, and flame atomic absorption spectroscopy to further explore the mechanisms of zinc, potassium, and sodium removal. The Zn removal rate and metallization rate increased gradually with the increase in dust content, reaching 97.57% and 87.14% at 30% dust content, respectively. Both K and Na removal rates reached a maximum of 83.57% and 94.78%, respectively, at 25% dust content. With the increase in reduction time and temperature, the removal rate of the three elements and the metallization rate gradually increased. When the briquettes with 20% blast furnace (BF) dust content were reduced at 1,200℃ for 20 min, the removal rates of zinc, potassium, and sodium reached 95.66%, 79.97%, and 91.49%, respectively, and the metallization rate reached 84.77%. It shows that the pre-reduction sintering process can effectively remove Zn, K, and Na from the BF dust and meet the requirements of subsequent BF production. The research results can provide some theoretical basis for industrial production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call