Abstract

This study investigated the removal and transformation of organic matter through laboratory-scale soil-aquifer treatment (SAT) soil columns over a 110-day period. Reductions in total organic carbon (TOC), dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC), nonbiodegradable dissolved organic carbon (NBDOC) and absorbance of ultraviolet light at 254 nm (UV-254) averaged 71.46%, 68.05%, 99.31%, 33.27% and 38.96% across the soil columns, respectively. DOC/TOC ratios increased slightly with depth while BDOC/DOC ratios showed a converse trend. DOC exiting the soil-column system contained only a very small biodegradable fraction. SAT decreased the concentration of DOC present in feed water but increased its aromaticity, as indicated by specific ultraviolet light absorbance (SUVA), which increased by 50%∼115% across the soil columns, indicating preferential removal of non-aromatic DOC during SAT. Overall, laboratory-scale SAT reduced trihalomethane formation potential (THMFP), although specific THMFP increased. THMFP reduction was dominated by removal in chloroform. All samples exhibited a common general relationship with respect to weight: chloroform>dichlorobromomethane >dibromochloromethane>bromoform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call