Abstract

Removal and recovery of uranium from dilute aqueous solutions by indigenously isolated viable and non-viable fungus ( Trichoderma harzianum) and algae (RD256, RD257) was studied by performing biosorption—desorption tests. Fungal strain was found comparatively better candidate for uranium biosorption than algae. The process was highly pH dependent. At optimized experimental parameters, the maximum uranium biosorption capacity of T. harzianum was 612 mg U g −1 whereas maximum values of uranium biosorption capacity exhibited by algal strains (RD256 and RD257) were 354 and 408 mg U g −1 and much higher in comparison with commercially available resins (Dowex-SBR-P and IRA-400). Uranium biosorption by algae followed Langmuir model while fungus exhibited a more complex multilayer phenomenon of biosorption and followed pseudo-second-order kinetics. Mass balance studies revealed that uranium recovery was 99.9%, for T. harzianum, and 97.1 and 95.3% for RD256 and RD257, respectively, by 0.1 M Hydrochloric acid which regenerated the uranium-free cell biomass facilitating the sorption–desorption cycles for better economic feasibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.