Abstract

AbstractA novel spherical sulfonic lignin adsorbent, denoted as SSLA, was adopted to removal and recover the cationic dyes from aqueous solutions, e.g., Cationic Red GTL, Cationic Turquoise GB, and Cationic Yellow X‐5GL, and various affecting factors were optimized. It was found that the adsorption of cationic dyes on the adsorbent was initially concentration‐ and temperature‐dependent, and followed both the Freundlich and Langmuir isothermal adsorption. The positives values for ΔH indicated that the process was endothermic. The breakthrough adsorption capacities for GTL, GB, and X‐5GL were 536.0, 550.0, and 582.0 mg/g, respectively, which prevailed over the commercial powdered activated carbon and strongly acidic cation‐exchange resin R732 evidently. Additionally, the maximum recovery percentage could reach 93.2, 97.1, and 96.5% separately for GTL, GB, and X‐5GL, when a mixture of 3.0 mol/L HCl and alcohol with the volume ratio of 1 : 4 was adopted as eluant. Moreover, the results of the mobile desorption and recovery tests indicated that the maximum concentrations of GTL, GB, and X‐5GL in the eluants could reach 13,108, 13,980, and 13,520 mg/L, respectively. Only 6.3, 5.0, and 4.6% of adsorption capacities for GTL, GB, and X‐5GL decreases individually after 20 replicates of adsorption and desorption. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2284–2291, 2006

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call