Abstract

Engineered nanomaterials (ENMs) are increasingly produced and consequently released into the environment. Therefore, there is a strong need to find a valid way to treat the ENMs pollution. In this study, the removal efficiencies of silver nanoparticles (AgNPs) from synthetic wastewater in lab-scale vertical flow constructed wetland (CW) systems with different operations (plant, hydraulic loading rates, bed depth) were investigated. Moreover, the environmental fate and impacts of AgNPs in CWs were also investigated. The results showed that CWs with plants were more effective in removing AgNPs than the unplanted CWs. Hydraulic loading had a significant effect on the performance of CWs in treating AgNPs, however, the influence of bed depth was negligible. AgNPs stopped in the CWs were mainly resided in the wetland substrate, indicating the main mechanism of AgNPs removal in CWs was through substrate adsorption. Although plant biomass, root activity, peroxidase activity of leaves and biofilm biomass were significantly altered following exposure to AgNPs (P < 0.05), CWs maintained constant high efficiency (63.2–93.8%) in removing AgNPs from wastewater during a continuous 2-month running. Overall, this paper suggests the feasibility and high-efficiency of using CWs to handle AgNPs contamination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.