Abstract

The persistence of the anthropogenic halogenated tracers, CFC-11 (CCl 3F), CFC-12 (CCl 2F 2), CFC-113 (CCl 2FCClF 2), carbon tetrachloride (CCl 4) and methyl chloroform (CH 3CCl 3) in oxygen-depleted waters was investigated in the anoxic fjord Framvaren in southern Norway. A model for the ventilation of the water in the fjord was created based on tritium and CFC-12 profiles. The results suggest that CFC-12 is stable in this environment, although still affected by particulate scavenging, while the other four halocarbon species shows signs of significant removal in the oxic/anoxic interface. The first-order removal coefficients were calculated to be 0.35, 0.19, 1.23 and 0.31 year −1 for CFC-11, CFC-113, CCl 4 and CH 3CCl 3, respectively. Significant downward flux of halogenated tracers by sinking organic matter is suggested by the model; the tracers are subsequently released to the water column by the remineralisation of the particles. This process acts as a sink of halogenated tracers in the surface waters, whereas it is a source for the deep waters. Our results points to bioaccumulation factors (BF) for the CFC tracers in the order of 4.4–5.4 (log BF), which is 100–600 times those previously reported. This might be of significance to near-shore, semi-enclosed, basins with a high flux of organic matter, but would still have little importance in open ocean basins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.